Aerospace Testing InternationalAerospace Testing International
  • News
    • A-E
      • Acoustic & Vibration
      • Avionics
      • Data Acquisition
      • Defense
      • Drones & Air Taxis
      • Electric & Hybrid
      • EMC
      • Engine Testing
      • Environmental Testing
    • F-L
      • Fatigue Testing
      • Flight Testing
      • Helicopters & Rotorcraft
      • High Speed Imaging
      • Industry News
    • M-S
      • Materials Testing
      • NDT
      • Simulation & Training
      • Software
      • Space
      • Structural Testing
      • Supplier News
    • T-Z
      • Technology
      • Telemetry & Communications
      • Weapons Testing
      • Wind Tunnels
  • Features
  • Magazines
    • March 2025
    • Dec 2024/Jan 2025
    • Showcase 2025
    • September 2024
    • June 2024
    • Archive Issues
    • Subscribe Free!
  • Opinion
  • Webinars
  • Events
    • All Events
    • Aerospace Test & Development Show
  • Podcasts
  • Videos
  • Suppliers
    • Supplier Spotlights
    • Press Releases
    • Technical Papers
  • Jobs
    • Browse Jobs
    • Post a Job – It’s FREE!
    • Manage Jobs (Employers)
LinkedIn YouTube X (Twitter)
LinkedIn YouTube X (Twitter)
Subscribe to magazine Subscribe to email newsletter Media Pack
Aerospace Testing InternationalAerospace Testing International
  • News
      • Acoustic & Vibration
      • Avionics
      • Data Acquisition
      • Defense
      • Drones & Air Taxis
      • Electric & Hybrid
      • EMC
      • Engine Testing
      • Environmental Testing
      • Fatigue Testing
      • Flight Testing
      • Helicopters & Rotorcraft
      • High Speed Imaging
      • Industry News
      • Materials Testing
      • NDT
      • Simulation & Training
      • Software
      • Space
      • Structural Testing
      • Supplier News
      • Technology
      • Telemetry & Communications
      • Weapons Testing
      • Wind Tunnels
  • Features
  • Magazines
    1. March 2025
    2. Dec 2024/Jan 2025
    3. Showcase 2025
    4. September 2024
    5. June 2024
    6. March 2024
    7. Archive Issues
    8. Subscribe Free!
    Featured
    19th March 2025

    In this issue: March 2025

    Online Magazines By Ben Sampson
    Recent

    In this issue: March 2025

    19th March 2025
    contents and front cover of magazine

    In this issue: December / January 2025

    19th December 2024
    Showcase 2025

    In this issue – Showcase 2025

    6th November 2024
  • Opinion
  • Webinars
  • Events
    • All Events
    • Aerospace Test & Development Show
  • Podcasts
  • Videos
  • Suppliers
    • Supplier Spotlights
    • Press Releases
    • Technical Papers
  • Jobs
    • Browse Jobs
    • Post a Job – It’s FREE!
    • Manage Jobs (Employers)
LinkedIn YouTube X (Twitter)
Aerospace Testing InternationalAerospace Testing International
Materials Testing

US researchers to develop more reliable 3D printing for making jet engines

Web TeamBy Web Team2nd November 20214 Mins Read
Share LinkedIn Twitter Facebook Email
researchers in front of a machine
Researchers Andrew Wessman and Mohammed Shafae are to combine data from sensors with machine learning to mitigate defects that occur during 3D printing with metals (Image: University of Arizona College of Engineering)

Researchers at the University of Arizona are using machine learning methods to monitor and mitigate defects that occur in the 3D printing processes used to produce parts for aircraft jet engines.

The research program, which is being funded by a US$750,000 from NASA funding, aims to mitigate and prevent defects that occur in additively manufactured metal parts designed for use in extreme environments.

Lockheed Martin Space and the 3D printing companies companies Open Additive  and CompuTherm are working with Mohammed Shafae of systems and industrial engineering and Andrew Wessman of materials science and engineering from the University of Airzona .

“Andrew and Mohammed are using their combined backgrounds in materials science and systems engineering to look at additive manufacturing from a microscopic level all the way up to the large-scale systems level,” said David W. Hahn, Craig M. Berge dean of the College of Engineering at University of Arizona. “Advanced manufacturing is one of the college’s research focus areas, and this is a great example of an interdisciplinary effort to advance the field and keep the UA at the forefront.”

Unlike subtractive manufacturing, which involves carving an object out of a larger piece of material, additive manufacturing uses only the amount of material necessary to create a part. Precision and quality are key in additive manufacturing, especially when it is being used to create heat-resistant metal parts for applications such as jet engines, rockets or other high temperature environments.

Different defects present different problems

There are two broad categories of defects that can occur in additively manufactured products.

Process defects are physically visible aberrations that occur when something goes wrong in the printing process. For example, two layers may not stick together properly, or there could be a hole or crack in the material.

Material defects are variations in chemistry or the arrangement of atoms that are not visible except with high resolution microscopes. The complexity of many additively manufactured parts can make it difficult to find these defects using common inspection methods. Material defects may happen if one layer is still cooling, and another hot layer is placed on top of it. The temperature of the first layer could rise, and the change in the cooling process might alter the part’s properties. For example, the metal could become brittle, or less able to endure strain.

Shafae said, “You can think how dangerous that would be if the part were used in a jet engine or a rocket. The types of defects we’re focused on are defects that will make the material behave differently than intended.”

Machine learning

The researchers are using a sophisticated sensor system, combined with thermal imaging cameras and high-speed localized cameras to monitor the 3D printing process and identify when and where defects occur.

They plan to apply machine learning methods to the data and develop a model that can predict defects when they occur. This will allow scientists to take corrective action to prevent the defects or terminate a process before wasting more time and materials. Research in this area typically uses a single type of sensor to detect specific categories of defects, but this work takes the concept a step further.

“We’re really going to try to learn how these separate categories of defects can be linked to each other, because sometimes the process defects can be the leading cause of the material defects,” Shafae said.

“This is truly an example of what people need to be doing to get to Industry 4.0, which is basically the use of data to improve processes, and ensure they are performing as you want them to,” Wessman said. “By improving manufacturing process quality, you can know what you have is a good product from the time you take it out of the machine.”

Share. Twitter LinkedIn Facebook Email
Previous ArticleAirbus flies A319neo on 100% sustainable aviation fuel for first time
Next Article Successful ground testing for all-electric race plane
Web Team

Related Posts

Materials Testing

Glasgow NextSpace facility to test 3D printed space materials

14th May 20253 Mins Read
Materials Testing

Self-healing polymer developed for spacecraft protection

6th May 20254 Mins Read
Materials Testing

TAU private laser accelerator center to open after $20m investment

29th April 20253 Mins Read
Latest Posts

Industry Adoption of 3D Optical Surface Gauges

21st May 2025

NDT: Robotics and software spur innovation

21st May 2025

Wisk and NASA to partner on US autonomous flight operations and standards

20th May 2025
Supplier Spotlights
Our Social Channels
  • Twitter
  • YouTube
  • LinkedIn
Getting in Touch
  • Subscribe To Magazine
  • Contact Us
  • Meet the Team
  • Media Pack
Related Topics
  • Aircraft Interiors
  • Business Jet Interiors
FREE WEEKLY NEWS EMAIL!

Get the 'best of the week' from this website direct to your inbox every Wednesday

© 2023 Mark Allen Group Ltd | All Rights Reserved
  • Cookie Policy
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.