Aerospace Testing InternationalAerospace Testing International
  • News
    • A-E
      • Acoustic & Vibration
      • Avionics
      • Data Acquisition
      • Defense
      • Drones & Air Taxis
      • Electric & Hybrid
      • EMC
      • Engine Testing
      • Environmental Testing
    • F-L
      • Fatigue Testing
      • Flight Testing
      • Helicopters & Rotorcraft
      • High Speed Imaging
      • Industry News
    • M-S
      • Materials Testing
      • NDT
      • Simulation & Training
      • Software
      • Space
      • Structural Testing
      • Supplier News
    • T-Z
      • Technology
      • Telemetry & Communications
      • Weapons Testing
      • Wind Tunnels
  • Features
  • Magazines
    • March 2025
    • Dec 2024/Jan 2025
    • Showcase 2025
    • September 2024
    • June 2024
    • Archive Issues
    • Subscribe Free!
  • Opinion
  • Webinars
  • Events
    • All Events
    • Aerospace Test & Development Show
  • Podcasts
  • Videos
  • Suppliers
    • Supplier Spotlights
    • Press Releases
    • Technical Papers
  • Jobs
    • Browse Jobs
    • Post a Job – It’s FREE!
    • Manage Jobs (Employers)
LinkedIn YouTube X (Twitter)
LinkedIn YouTube X (Twitter)
Subscribe to magazine Subscribe to email newsletter Media Pack
Aerospace Testing InternationalAerospace Testing International
  • News
      • Acoustic & Vibration
      • Avionics
      • Data Acquisition
      • Defense
      • Drones & Air Taxis
      • Electric & Hybrid
      • EMC
      • Engine Testing
      • Environmental Testing
      • Fatigue Testing
      • Flight Testing
      • Helicopters & Rotorcraft
      • High Speed Imaging
      • Industry News
      • Materials Testing
      • NDT
      • Simulation & Training
      • Software
      • Space
      • Structural Testing
      • Supplier News
      • Technology
      • Telemetry & Communications
      • Weapons Testing
      • Wind Tunnels
  • Features
  • Magazines
    1. March 2025
    2. Dec 2024/Jan 2025
    3. Showcase 2025
    4. September 2024
    5. June 2024
    6. March 2024
    7. Archive Issues
    8. Subscribe Free!
    Featured
    19th March 2025

    In this issue: March 2025

    Online Magazines By Ben Sampson
    Recent

    In this issue: March 2025

    19th March 2025
    contents and front cover of magazine

    In this issue: December / January 2025

    19th December 2024
    Showcase 2025

    In this issue – Showcase 2025

    6th November 2024
  • Opinion
  • Webinars
  • Events
    • All Events
    • Aerospace Test & Development Show
  • Podcasts
  • Videos
  • Suppliers
    • Supplier Spotlights
    • Press Releases
    • Technical Papers
  • Jobs
    • Browse Jobs
    • Post a Job – It’s FREE!
    • Manage Jobs (Employers)
LinkedIn YouTube X (Twitter)
Aerospace Testing InternationalAerospace Testing International
Space

Space power to demonstrate wireless beaming technology in orbit

Web TeamBy Web Team12th January 20223 Mins Read
Share LinkedIn Twitter Facebook Email
Satellite power
The laser power beaming technology would power satellites in Low Earth Orbit (Image: Space Power)

UK-based startup Space Power is partnering with Surrey University to develop the first in-orbit laser-based power beaming demonstration outside of a governmental organisation.

Funded by the £7.4 million (US$10.1 million) SPRINT (Space Research and Innovation Network for Technology) program, the project will support the company’s plans to build a wireless power beaming prototype for space satellites by 2023, with full commercialisation by 2025.

The project follows on from an initial feasibility study on laser transmission with Surrey University, and will investigate and verify the efficiency benefits that can be gained compared to sunlight,  measuring the advantages of laser power transmission. It will also provide data to enable Space Power to design a prototype system for small satellites.

According to Space Power, wireless power beaming will be a critical technology for space infrastructure that will provide auxiliary power and increase small LEO (low earth orbit) satellites’ baseline efficiency.

Space Power said its first product will be designed as a plug-and-play system for satellite manufacturers to include in LEO constellations of satellites.

Professor Stephen Sweeney’s group at Surrey University’s Department of Physics and Advanced Technology has developed laser laboratories and optical systems that will be used to pursue the project’s technical aspects.

Laser power beaming experiment
Feasibility studies of the laser power beaming technology have been conducted at the University of Surrey (Image: Space Power)

“By focusing on light optics and power beaming, we are looking to increase small satellite operating efficiencies by a factor of between 2X-5X,” said Keval Dattani, director of Space Power. 

“There’s a desperate need for more power to deliver the data we need to help tackle climate change, ocean pollution and erosion and telecommunications – currently this is being done at the expense of putting up more, larger satellites than necessary and adding more and more layers of rare earth materials to their photovoltaics, only to seek out an extra five per cent of power.”

This strategy is unsustainable, Dattani added, demanding more of the Earth’s limited resources against the backdrop of CubeSats’ “exploding” popularity.

“We have seen the benefits of powering satellites using lasers which enables smaller satellites, simpler systems and fewer resources – whilst performing more work to help us understand our planet better. For us, this is a neat solution with long term benefits, not least for lunar outposts and asteroid mining but back here on earth too,” said Dattani.

Sweeney, a professor of physics at Surrey University said, “The University of Surrey has a long track record in photonics and space research and brings unique expertise in both high power lasers and photovoltaics. We have many years of experience in optical wireless power and are delighted to work with Space Power to help develop such technologies for space-based applications.”

Share. Twitter LinkedIn Facebook Email
Previous ArticleUnmanned air traffic management company Anra opens European office
Next Article Active Flow Control’s potential to improve flight performance
Web Team

Related Posts

Materials Testing

Glasgow NextSpace facility to test 3D printed space materials

14th May 20253 Mins Read
Materials Testing

Self-healing polymer developed for spacecraft protection

6th May 20254 Mins Read
News

Orion Artemis II Moon spacecraft completes testing

2nd May 20253 Mins Read
Latest Posts

Industry Adoption of 3D Optical Surface Gauges

21st May 2025

NDT: Robotics and software spur innovation

21st May 2025

Wisk and NASA to partner on US autonomous flight operations and standards

20th May 2025
Supplier Spotlights
Our Social Channels
  • Twitter
  • YouTube
  • LinkedIn
Getting in Touch
  • Subscribe To Magazine
  • Contact Us
  • Meet the Team
  • Media Pack
Related Topics
  • Aircraft Interiors
  • Business Jet Interiors
FREE WEEKLY NEWS EMAIL!

Get the 'best of the week' from this website direct to your inbox every Wednesday

© 2023 Mark Allen Group Ltd | All Rights Reserved
  • Cookie Policy
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.