Aerospace Testing InternationalAerospace Testing International
  • News
    • A-E
      • Acoustic & Vibration
      • Avionics
      • Data Acquisition
      • Defense
      • Drones & Air Taxis
      • Electric & Hybrid
      • EMC
      • Engine Testing
      • Environmental Testing
    • F-L
      • Fatigue Testing
      • Flight Testing
      • Helicopters & Rotorcraft
      • High Speed Imaging
      • Industry News
    • M-S
      • Materials Testing
      • NDT
      • Simulation & Training
      • Software
      • Space
      • Structural Testing
      • Supplier News
    • T-Z
      • Technology
      • Telemetry & Communications
      • Weapons Testing
      • Wind Tunnels
  • Features
  • Magazines
    • March 2025
    • Dec 2024/Jan 2025
    • Showcase 2025
    • September 2024
    • June 2024
    • Archive Issues
    • Subscribe Free!
  • Opinion
  • Webinars
  • Events
    • All Events
    • Aerospace Test & Development Show
  • Podcasts
  • Videos
  • Suppliers
    • Supplier Spotlights
    • Press Releases
    • Technical Papers
  • Jobs
    • Browse Jobs
    • Post a Job – It’s FREE!
    • Manage Jobs (Employers)
LinkedIn YouTube X (Twitter)
LinkedIn YouTube X (Twitter)
Subscribe to magazine Subscribe to email newsletter Media Pack
Aerospace Testing InternationalAerospace Testing International
  • News
      • Acoustic & Vibration
      • Avionics
      • Data Acquisition
      • Defense
      • Drones & Air Taxis
      • Electric & Hybrid
      • EMC
      • Engine Testing
      • Environmental Testing
      • Fatigue Testing
      • Flight Testing
      • Helicopters & Rotorcraft
      • High Speed Imaging
      • Industry News
      • Materials Testing
      • NDT
      • Simulation & Training
      • Software
      • Space
      • Structural Testing
      • Supplier News
      • Technology
      • Telemetry & Communications
      • Weapons Testing
      • Wind Tunnels
  • Features
  • Magazines
    1. March 2025
    2. Dec 2024/Jan 2025
    3. Showcase 2025
    4. September 2024
    5. June 2024
    6. March 2024
    7. Archive Issues
    8. Subscribe Free!
    Featured
    19th March 2025

    In this issue: March 2025

    Online Magazines By Ben Sampson
    Recent

    In this issue: March 2025

    19th March 2025
    contents and front cover of magazine

    In this issue: December / January 2025

    19th December 2024
    Showcase 2025

    In this issue – Showcase 2025

    6th November 2024
  • Opinion
  • Webinars
  • Events
    • All Events
    • Aerospace Test & Development Show
  • Podcasts
  • Videos
  • Suppliers
    • Supplier Spotlights
    • Press Releases
    • Technical Papers
  • Jobs
    • Browse Jobs
    • Post a Job – It’s FREE!
    • Manage Jobs (Employers)
LinkedIn YouTube X (Twitter)
Aerospace Testing InternationalAerospace Testing International
Technology

Engineers show lightweight steel composite foam is the best armor plating

Ben SampsonBy Ben Sampson11th April 20183 Mins Read
Share LinkedIn Twitter Facebook Email

The CMF panel after the test. The black marks are fragments trapped inside the panel. (Image: NC State University)

Researchers have successfully shown how steel composite foam offers better protection than existing armor from anti-aircraft rounds, while also weighing less, in a series of tests and simluations.

The researchers, from North Carolina State University and the US Army’s Aviation Applied Technology Directorate, fired high explosive incendiary (HEI) rounds, the type often used in anti-aircraft weapons, into stainless steel composite metal foam (steel-CMF) and detonated them only 18in (450mm) away.

The steel-CMF successfully blocked the blast pressure and fragmentation at 5,000ft/sec from the HEI rounds.

Afsaneh Rabiei, senior author of the study and professor of mechanical and aerospace engineering at North Carolina State University said, “We found that steel-CMF offers much more protection than all other existing armor materials, while lowering the weight remarkably.

“We can provide as much protection as existing steel armor at a fraction of the weight – or provide much more protection at the same weight.

For the test, researchers fired a 23 × 152mm HEI round into a 2.3mm-thick aluminum strikeplate. Steel-CMF plates of either 9.5mm or 16.75mm thickness were placed 450mm from the aluminum strikeplate.

The researchers assessed that the steel-CMF held up against the wave of blast pressure and against the copper and steel fragments created by the exploding round, as well as aluminum from the strikeplate.

“Both thicknesses of steel-CMF stopped the blastwave, and the 16.75mm steel-CMF stopped all of the fragments sizes,” Rabiei said.

“The 9.5mm steel-CMF stopped most, but not all, of the fragments. Based on the results, a 10mm steel-CMF plate would have stopped all of the fragment sizes.”

“Many military vehicles use armor made of rolled homogeneous steel, which weighs three times as much as our steel-CMF.

“Based on tests like these, we believe we can replace that rolled steel with steel-CMF without sacrificing safety, better blocking not only the fragments, but also the blast waves that are responsible for trauma such as major brain injuries. That would reduce vehicle weight significantly, improving fuel mileage and vehicle performance,” Rabiei added.

Model simulation

Comparison of the stress distribution in CMF (a,c) and aluminum 5083-H116 (b,d) panels upon interaction with blast wave and fragment impacts

The researchers also developed computer models of how the steel-CMF plate would perform as part of the study. When compared to the experimental results, the model matched very closely. The researchers then used the model to predict how aluminum 5083 armor – a type already on the market that has a similar weight and thickness to the 16.75mm steel-CMF – would perform against HEI rounds.

The model showed that, while aluminum armor of similar weight to the steel-CMF panels would stop all of the fragments, the aluminum armor would buckle and allow fragments to penetrate much deeper. This would result in more damage to the panel, transferring large amounts of stress to the soldiers or equipment behind the armor.

On the other hand, the steel-CMF absorbs the energy of the blast wave and flying fragments through local deformation of hollow spheres, leaving the steel-CMF armor under considerably less stress – offering more protection against fragments and blast waves.

Engineers will next test the steel-CMF against improvised explosive devices and high-caliber, mounted ballistics. The researchers have already tested the CMF’s performance against hand-held assault weapons, radiation and extreme heat.

The research paper, “A study on blast and fragment resistance of composite metal foams through experimental and modeling approaches,” was published last month in the Journal of Composite Structures.

April 11, 2018

Share. Twitter LinkedIn Facebook Email
Previous ArticleAssystem Technologies buys Stirling Dynamics
Next Article F-35 completes final flight test program
Ben Sampson

Ben has worked as a journalist and editor, covering technology, engineering and industry for the last 20 years. Initially writing about subjects from nuclear submarines to autonomous cars to future design and manufacturing technologies, he was editor of a leading UK-based engineering magazine before becoming editor of Aerospace Testing in 2017.

Related Posts

News

Commercial aircraft could deploy aerosols to cool planet

9th May 20253 Mins Read
Defense

South Korea tests photonic radar for drone detection

22nd April 20252 Mins Read
Defense

Extended Reality technology enables remote aircraft inspection

17th April 20252 Mins Read
Latest Posts

Industry Adoption of 3D Optical Surface Gauges

21st May 2025

NDT: Robotics and software spur innovation

21st May 2025

Wisk and NASA to partner on US autonomous flight operations and standards

20th May 2025
Supplier Spotlights
Our Social Channels
  • Twitter
  • YouTube
  • LinkedIn
Getting in Touch
  • Subscribe To Magazine
  • Contact Us
  • Meet the Team
  • Media Pack
Related Topics
  • Aircraft Interiors
  • Business Jet Interiors
FREE WEEKLY NEWS EMAIL!

Get the 'best of the week' from this website direct to your inbox every Wednesday

© 2023 Mark Allen Group Ltd | All Rights Reserved
  • Cookie Policy
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.