Aerospace Testing InternationalAerospace Testing International
  • News
    • A-E
      • Acoustic & Vibration
      • Avionics
      • Data Acquisition
      • Defense
      • Drones & Air Taxis
      • Electric & Hybrid
      • EMC
      • Engine Testing
      • Environmental Testing
    • F-L
      • Fatigue Testing
      • Flight Testing
      • Helicopters & Rotorcraft
      • High Speed Imaging
      • Industry News
    • M-S
      • Materials Testing
      • NDT
      • Simulation & Training
      • Software
      • Space
      • Structural Testing
      • Supplier News
    • T-Z
      • Technology
      • Telemetry & Communications
      • Weapons Testing
      • Wind Tunnels
  • Features
  • Magazines
    • March 2025
    • Dec 2024/Jan 2025
    • Showcase 2025
    • September 2024
    • June 2024
    • Archive Issues
    • Subscribe Free!
  • Opinion
  • Webinars
  • Events
    • All Events
    • Aerospace Test & Development Show
  • Podcasts
  • Videos
  • Suppliers
    • Supplier Spotlights
    • Press Releases
    • Technical Papers
  • Jobs
    • Browse Jobs
    • Post a Job – It’s FREE!
    • Manage Jobs (Employers)
LinkedIn YouTube X (Twitter)
LinkedIn YouTube X (Twitter)
Subscribe to magazine Subscribe to email newsletter Media Pack
Aerospace Testing InternationalAerospace Testing International
  • News
      • Acoustic & Vibration
      • Avionics
      • Data Acquisition
      • Defense
      • Drones & Air Taxis
      • Electric & Hybrid
      • EMC
      • Engine Testing
      • Environmental Testing
      • Fatigue Testing
      • Flight Testing
      • Helicopters & Rotorcraft
      • High Speed Imaging
      • Industry News
      • Materials Testing
      • NDT
      • Simulation & Training
      • Software
      • Space
      • Structural Testing
      • Supplier News
      • Technology
      • Telemetry & Communications
      • Weapons Testing
      • Wind Tunnels
  • Features
  • Magazines
    1. March 2025
    2. Dec 2024/Jan 2025
    3. Showcase 2025
    4. September 2024
    5. June 2024
    6. March 2024
    7. Archive Issues
    8. Subscribe Free!
    Featured
    19th March 2025

    In this issue: March 2025

    Online Magazines By Ben Sampson
    Recent

    In this issue: March 2025

    19th March 2025
    contents and front cover of magazine

    In this issue: December / January 2025

    19th December 2024
    Showcase 2025

    In this issue – Showcase 2025

    6th November 2024
  • Opinion
  • Webinars
  • Events
    • All Events
    • Aerospace Test & Development Show
  • Podcasts
  • Videos
  • Suppliers
    • Supplier Spotlights
    • Press Releases
    • Technical Papers
  • Jobs
    • Browse Jobs
    • Post a Job – It’s FREE!
    • Manage Jobs (Employers)
LinkedIn YouTube X (Twitter)
Aerospace Testing InternationalAerospace Testing International
Features NDT Space

Locating cracks on the International Space Station using eddy current flaw detectors

Web TeamBy Web Team3rd March 20224 Mins Read
Share LinkedIn Twitter Facebook Email
International Space Station

By Ghislain Morais

The ISS is composed of many pressurized compartments and components that are connected and sealed at their joints. An accepted nominal air leak rate has been established and is monitored by ISS flight controllers. When a slight increase in the nominal leak rate of the ISS was detected, an investigation was launched. Although the increase was not considered hazardous to those on board, it could have long-term implications regarding compressed-air supply requirements. A supply that has to be transported in a rocket launched from Earth, so less is certainly better.

The source of the leak was identified as a small crack in the transfer chamber of the Zvezda service module. Essential elements of space station operation are contained in the service module:

  • Living quarters
  • Life support systems
  • Electrical power distribution
  • Data processing systems
  • Flight control systems
  • Propulsion systems
  • Communication system

On pressurized containers, cracks can originate at many locations. In most cases, cracks begin at points with the highest stress loads, such as sharp edges, thick-to-thin transitions, and areas where repair has occurred.

The standard method for repairing cracks of this nature requires very precise marking of the crack tips. Olympus’ portable NORTEC 600D dual frequency model and a pencil-shaped probe were used since they would provide the required accuracy to determine the locations of the crack tips. NASA was able to certify the equipment for launch and for use on the ISS. Its user-friendly operation was relatively easy for the ISS crew to learn.

eddy current flaw detector
NORTEC eddy current flaw detector (left) and a bent-shaft probe (right) for surface crack detection

How Eddy Current Technology Works

Eddy current testing (ECT) uses electromagnetic induction to generate an oscillating magnetic field in conductive materials. For example, when an ECT probe is brought close to a metal part, a circular flow of electrons known as an eddy current will begin to move through the material like swirling water in a stream.

diagram

That eddy current flowing through the tested part in turn generates its own magnetic field, which interacts with the coil in the probe and its field through mutual inductance. Changes in metal thickness or defects such as near-surface cracking interrupt or alter the amplitude and pattern of the eddy current and the resulting magnetic field, varying the electrical impedance of the coil. The eddy current instrument plots changes in the impedance amplitude and phase angle, which can be used by a trained operator to identify changes in the part.

Detecting Crack Tips Using High-Frequency ECT Surface Probes

ECT probes normally used for surface crack detection, also known as high-frequency eddy current (HFEC) probes, have a small coil that can be made shielded or unshielded. It can be configured in four modes: absolute bridge, absolute reflection, differential bridge, or differential reflection.

To match the physical requirements, there are many types of surface probes, both in straight and angled versions. They are also available with flexible shafts that can be adjusted to different shapes. Surface probes can be designed with the sensitivity required to detect small crack tips. The size of the coil is selected to obtain good detection of the targeted crack length, depth, and width.

0.5 mm (0.020 in.) pin holes in a standard (left) and the signal amplitude results on of one pin hole (right) obtained with a probe with an absolute bridge coil configuration

flaw detection
0.5 mm (0.020 in.) pin holes in a standard (left) and the signal amplitude results on of one pin hole (right) obtained with a probe with an absolute bridge coil configuration

Meeting NASA’s Standards for Probability of Detection (POD)

To validate that the probability of detection (POD) complied with NASA’s requirements, a POD analysis needed to be conducted. To do this, a reference standard is scanned multiple times using the same inspection parameters and the results are recorded for analysis.

 

Number of meas. Number of successes Number of failures
29 29 0
46 45 1
61 59 2

 

The probability of missing a defect (p in the equation below) is calculated using the formula referenced in the standard used, such as this ISO equation:

Where n is the number of inspections (hits plus misses), d is the number of misses, and F is the quantile of the F-distribution. When the NORTEC 600D flaw detector was tested, it demonstrated the required 90% POD of the targeted defects with a confidence level of 95%.

formula

Share. Twitter LinkedIn Facebook Email
Previous ArticleLockheed Martin could build £50m satellite factory in UK
Next Article BluShift conducts first biofuel rocket engine test
Web Team

Related Posts

News

Astrolight raises €2.8m to build optical space communications network

22nd May 20253 Mins Read
Features

NDT: Robotics and software spur innovation

21st May 20258 Mins Read
Features

How new computing advances have reignited alternative rocket engine design

14th May 20258 Mins Read
Latest Posts

Astrolight raises €2.8m to build optical space communications network

22nd May 2025

Industry Adoption of 3D Optical Surface Gauges

21st May 2025

NDT: Robotics and software spur innovation

21st May 2025
Supplier Spotlights
Our Social Channels
  • Twitter
  • YouTube
  • LinkedIn
Getting in Touch
  • Subscribe To Magazine
  • Contact Us
  • Meet the Team
  • Media Pack
Related Topics
  • Aircraft Interiors
  • Business Jet Interiors
FREE WEEKLY NEWS EMAIL!

Get the 'best of the week' from this website direct to your inbox every Wednesday

© 2023 Mark Allen Group Ltd | All Rights Reserved
  • Cookie Policy
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.