Aerospace Testing InternationalAerospace Testing International
  • News
    • A-E
      • Acoustic & Vibration
      • Avionics
      • Data Acquisition
      • Defense
      • Drones & Air Taxis
      • Electric & Hybrid
      • EMC
      • Engine Testing
      • Environmental Testing
    • F-L
      • Fatigue Testing
      • Flight Testing
      • Helicopters & Rotorcraft
      • High Speed Imaging
      • Industry News
    • M-S
      • Materials Testing
      • NDT
      • Simulation & Training
      • Software
      • Space
      • Structural Testing
      • Supplier News
    • T-Z
      • Technology
      • Telemetry & Communications
      • Weapons Testing
      • Wind Tunnels
  • Features
  • Magazines
    • March 2025
    • Dec 2024/Jan 2025
    • Showcase 2025
    • September 2024
    • June 2024
    • Archive Issues
    • Subscribe Free!
  • Opinion
  • Webinars
  • Events
    • All Events
    • Aerospace Test & Development Show
  • Podcasts
  • Videos
  • Suppliers
    • Supplier Spotlights
    • Press Releases
    • Technical Papers
  • Jobs
    • Browse Jobs
    • Post a Job – It’s FREE!
    • Manage Jobs (Employers)
LinkedIn YouTube X (Twitter)
LinkedIn YouTube X (Twitter)
Subscribe to magazine Subscribe to email newsletter Media Pack
Aerospace Testing InternationalAerospace Testing International
  • News
      • Acoustic & Vibration
      • Avionics
      • Data Acquisition
      • Defense
      • Drones & Air Taxis
      • Electric & Hybrid
      • EMC
      • Engine Testing
      • Environmental Testing
      • Fatigue Testing
      • Flight Testing
      • Helicopters & Rotorcraft
      • High Speed Imaging
      • Industry News
      • Materials Testing
      • NDT
      • Simulation & Training
      • Software
      • Space
      • Structural Testing
      • Supplier News
      • Technology
      • Telemetry & Communications
      • Weapons Testing
      • Wind Tunnels
  • Features
  • Magazines
    1. March 2025
    2. Dec 2024/Jan 2025
    3. Showcase 2025
    4. September 2024
    5. June 2024
    6. March 2024
    7. Archive Issues
    8. Subscribe Free!
    Featured
    19th March 2025

    In this issue: March 2025

    Online Magazines By Ben Sampson
    Recent

    In this issue: March 2025

    19th March 2025
    contents and front cover of magazine

    In this issue: December / January 2025

    19th December 2024
    Showcase 2025

    In this issue – Showcase 2025

    6th November 2024
  • Opinion
  • Webinars
  • Events
    • All Events
    • Aerospace Test & Development Show
  • Podcasts
  • Videos
  • Suppliers
    • Supplier Spotlights
    • Press Releases
    • Technical Papers
  • Jobs
    • Browse Jobs
    • Post a Job – It’s FREE!
    • Manage Jobs (Employers)
LinkedIn YouTube X (Twitter)
Aerospace Testing InternationalAerospace Testing International
Engine Testing Space

Aerojet Rocketdyne achieves 3D printing milestone with RL10 testing

Anthony JamesBy Anthony James13th April 20173 Mins Read
Share LinkedIn Twitter Facebook Email

Aerojet Rocketdyne has successfully hot-fire tested a full-scale, additively manufactured thrust chamber assembly for the RL10 rocket engine that was built from a copper alloy using selective laser melting (SLM) technology, which is often referred to as 3D printing.

Aerojet Rocketdyne has been actively working over the last decade to incorporate 3D printing technology into the RL10 and other propulsion systems to make them more affordable while taking advantage of the inherent design and performance capabilities made possible by 3D printing. This recent testing was enabled by the Defense Production Act Title III program management office located at Wright-Patterson Air Force Base near Dayton, Ohio.

“Aerojet Rocketdyne has made several major upgrades to the RL10 to enhance the engine’s performance and affordability since it first entered service in the early 1960s,” said Aerojet Rocketdyne CEO and president, Eileen Drake. “Incorporating additive manufacturing into the RL10 is the next logical step as we look to make the engine even more affordable for our customers.”

“We believe this is the largest copper-alloy thrust chamber ever built with 3D printing and successfully tested,” said Additive Manufacturing Program manager Jeff Haynes.

“Producing aerospace-quality components with additive manufacturing is challenging. Producing them with a high-thermal-conductivity copper alloy using SLM technology is even more difficult. Infusing this technology into full-scale rocket engines is truly transformative as it opens up new design possibilities for our engineers and paves the way for a new generation of low-cost rocket engines.”

The 3D printed RL10 copper thrust chamber would replace the current RL10C-1 model design, which uses a very complex array of drawn, hydroformed stainless steel tubes that are brazed together to form a thrust chamber. The new chamber design is made up of only two primary copper parts and takes just under a month to print using SLM technology, reducing overall lead time by several months. The part-count reduction of greater than 90% is significant as it reduces complexity and cost when compared with RL10 thrust chambers that are built today using traditional manufacturing techniques.

Another key benefit provided by 3D printing is the ability to design and build advanced features that allow for improved heat transfer. For many rocket engine applications, this enhanced heat transfer capability enables a more compact and lighter engine, which is highly desirable in space launch applications.

“This full-scale RL10 thrust chamber test series further proves that additive manufacturing technology will enable us to continue to deliver high performance and reliability while substantially reducing component production costs,” said RL10 program director Christine Cooley.

“Now that we have validated our approach with full-scale testing of a 3D printed injector and copper thrust chamber, we are positioned to qualify a new generation of RL10 engines at a much lower cost, largely attributed to the additive manufacturing capabilities we have developed and demonstrated. With the next generation of RL10 engines, we aim to maintain the reliability and performance that our customers have come to expect, while at the same time making the engine more affordable to meet the demands of today’s marketplace.”

Aerojet Rocketdyne is applying 3D printing technology to many of its other products, including the RS-25 engines that will help explore deep space, and the company’s new AR1 booster engine that is being developed to replace Russian-built RD-180 engines by the congressionally-mandated deadline of 2019.

April 13, 2017

Share. Twitter LinkedIn Facebook Email
Previous ArticleSubscale DARPA hybrid electric VTOL X-Plane finishes testing
Next Article MS-177 sensor completes first flight test
Anthony James

Related Posts

News

Astrolight raises €2.8m to build optical space communications network

22nd May 20253 Mins Read
Engine Testing

Venus Aerospace tests rotating detonation rocket engine

16th May 20253 Mins Read
Engine Testing

Rolls-Royce Orpheus engine program completes 100 tests

15th May 20252 Mins Read
Latest Posts

dSPACE expands Scalexio platform for HIL testing

23rd May 2025

AIR cargo eVTOL completes night flight testing

22nd May 2025

Astrolight raises €2.8m to build optical space communications network

22nd May 2025
Supplier Spotlights
Our Social Channels
  • Twitter
  • YouTube
  • LinkedIn
Getting in Touch
  • Subscribe To Magazine
  • Contact Us
  • Meet the Team
  • Media Pack
Related Topics
  • Aircraft Interiors
  • Business Jet Interiors
FREE WEEKLY NEWS EMAIL!

Get the 'best of the week' from this website direct to your inbox every Wednesday

© 2023 Mark Allen Group Ltd | All Rights Reserved
  • Cookie Policy
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.