Aerospace Testing InternationalAerospace Testing International
  • News
    • A-E
      • Acoustic & Vibration
      • Avionics
      • Data Acquisition
      • Defense
      • Drones & Air Taxis
      • Electric & Hybrid
      • EMC
      • Engine Testing
      • Environmental Testing
    • F-L
      • Fatigue Testing
      • Flight Testing
      • Helicopters & Rotorcraft
      • High Speed Imaging
      • Industry News
    • M-S
      • Materials Testing
      • NDT
      • Simulation & Training
      • Software
      • Space
      • Structural Testing
      • Supplier News
    • T-Z
      • Technology
      • Telemetry & Communications
      • Weapons Testing
      • Wind Tunnels
  • Features
  • Magazines
    • March 2025
    • Dec 2024/Jan 2025
    • Showcase 2025
    • September 2024
    • June 2024
    • Archive Issues
    • Subscribe Free!
  • Opinion
  • Webinars
  • Events
    • All Events
    • Aerospace Test & Development Show
  • Podcasts
  • Videos
  • Suppliers
    • Supplier Spotlights
    • Press Releases
    • Technical Papers
  • Jobs
    • Browse Jobs
    • Post a Job – It’s FREE!
    • Manage Jobs (Employers)
LinkedIn YouTube X (Twitter)
LinkedIn YouTube X (Twitter)
Subscribe to magazine Subscribe to email newsletter Media Pack
Aerospace Testing InternationalAerospace Testing International
  • News
      • Acoustic & Vibration
      • Avionics
      • Data Acquisition
      • Defense
      • Drones & Air Taxis
      • Electric & Hybrid
      • EMC
      • Engine Testing
      • Environmental Testing
      • Fatigue Testing
      • Flight Testing
      • Helicopters & Rotorcraft
      • High Speed Imaging
      • Industry News
      • Materials Testing
      • NDT
      • Simulation & Training
      • Software
      • Space
      • Structural Testing
      • Supplier News
      • Technology
      • Telemetry & Communications
      • Weapons Testing
      • Wind Tunnels
  • Features
  • Magazines
    1. March 2025
    2. Dec 2024/Jan 2025
    3. Showcase 2025
    4. September 2024
    5. June 2024
    6. March 2024
    7. Archive Issues
    8. Subscribe Free!
    Featured
    19th March 2025

    In this issue: March 2025

    Online Magazines By Ben Sampson
    Recent

    In this issue: March 2025

    19th March 2025
    contents and front cover of magazine

    In this issue: December / January 2025

    19th December 2024
    Showcase 2025

    In this issue – Showcase 2025

    6th November 2024
  • Opinion
  • Webinars
  • Events
    • All Events
    • Aerospace Test & Development Show
  • Podcasts
  • Videos
  • Suppliers
    • Supplier Spotlights
    • Press Releases
    • Technical Papers
  • Jobs
    • Browse Jobs
    • Post a Job – It’s FREE!
    • Manage Jobs (Employers)
LinkedIn YouTube X (Twitter)
Aerospace Testing InternationalAerospace Testing International
Drones & Air Taxis

Airbus Zephyr stratospheric drone demos internet connectivity during test flight

Ben SampsonBy Ben Sampson16th November 20213 Mins Read
Share LinkedIn Twitter Facebook Email
Zephyr drone
Airbus' Zephyr High Altitude Platform Station (HAPS) is a drone able to fly in the atmosphere for extended periods of time (Image: Airbus)

Airbus’ Zephyr S high altitude drone has provided wireless broadband connectivity during an 18-day stratospheric flight test.

The test program, which was conducted in partnership with Japanese mobile network provider NTT Docomo, took place in the USA during the summer.

The solar-powered Zephyr-S, which is known as High Altitude Platform Station (HAPS), has a 25m wingspan and weighs 75kg (165lbs). The aircraft has been in development at Airbus since 2013, but the program was originally started by UK-based defence company QinetiQ in 2003.

Airbus has mooted several possible applications for the Zephyr, initially in the defence sector to provide communications and surveillance but also in the commercial sector for disaster management and providing communications in unconnected regions.

During the stratospheric test flights, the Zephyr S carried a radio transmitter that provided a datalink at an altitude of approximately 20km (12 miles) to a receiving antenna on the ground.

The trial tested the stability of the connection between the Zephyr S HAPS and the ground antenna and how it was affected by factors such as weather conditions, differences in reception distance and the flight pattern of the HAPS aircraft. As a result, under three specific scenarios: clear, rainy and cloudy conditions, and in a multitude of flight patterns, data transmissions across various speeds were successfully demonstrated, up to a distance of 140km (87 miles).

Tests included various bandwidths to simulate direct-to-device service from the HAPS to end users using low, nominal and high throughput. The demonstration confirmed the viability of the 2GHz spectrum for HAPS-based services and also the use of a narrow (450MHz) band to provide connectivity in a range of up to 140km.

The measurement and analysis of the propagation of radio waves transmitted from Zephyr demonstrated the feasibility of stratospheric communications to devices such as smartphones. Airbus and NTT Docomo will now work to provide communication services to mountainous areas, remote islands, and maritime areas where radio waves are difficult to reach.

Takehiro Nakamura, general manager of Docomo’s 6G-IOWN Promotion Department said, “DOCOMO believes that HAPS will be a promising solution for coverage expansion in 5G evolution and 6G.

“In this measurement experiment, we were able to demonstrate the effectiveness of HAPS, especially for direct communication to smartphones, through long-term propagation measurements using actual HAPS equipment. Based on these results, we would like to further study the practical application of HAPS in 5G evolution and 6G with Airbus.”

The test data will be used to inform future LTE direct-to-device services that are expected to be provided via the Airbus Zephyr HAPS solution.

“Billions of people across the world suffer from poor or no connectivity. These tests show us the viability of the stratosphere to bridge this divide and provide direct to device connectivity via Zephyr without the need for base stations or extra infrastructure,”

Zephyr infographic

Share. Twitter LinkedIn Facebook Email
Previous ArticleSpinLaunch conducts first test flight
Next Article Q&A: Manuel Voegtli, Kistler Instrumente AG
Ben Sampson

Ben has worked as a journalist and editor, covering technology, engineering and industry for the last 20 years. Initially writing about subjects from nuclear submarines to autonomous cars to future design and manufacturing technologies, he was editor of a leading UK-based engineering magazine before becoming editor of Aerospace Testing in 2017.

Related Posts

Drones & Air Taxis

Wisk and NASA to partner on US autonomous flight operations and standards

20th May 20252 Mins Read
Drones & Air Taxis

Cranfield team advances in global eVTOL challenge

19th May 20253 Mins Read
Drones & Air Taxis

ANRA receives first U-space service provider certificate

15th May 20253 Mins Read
Latest Posts

Industry Adoption of 3D Optical Surface Gauges

21st May 2025

NDT: Robotics and software spur innovation

21st May 2025

Wisk and NASA to partner on US autonomous flight operations and standards

20th May 2025
Supplier Spotlights
Our Social Channels
  • Twitter
  • YouTube
  • LinkedIn
Getting in Touch
  • Subscribe To Magazine
  • Contact Us
  • Meet the Team
  • Media Pack
Related Topics
  • Aircraft Interiors
  • Business Jet Interiors
FREE WEEKLY NEWS EMAIL!

Get the 'best of the week' from this website direct to your inbox every Wednesday

© 2023 Mark Allen Group Ltd | All Rights Reserved
  • Cookie Policy
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.