Aerospace Testing InternationalAerospace Testing International
  • News
    • A-E
      • Acoustic & Vibration
      • Avionics
      • Data Acquisition
      • Defense
      • Drones & Air Taxis
      • Electric & Hybrid
      • EMC
      • Engine Testing
      • Environmental Testing
    • F-L
      • Fatigue Testing
      • Flight Testing
      • Helicopters & Rotorcraft
      • High Speed Imaging
      • Industry News
    • M-S
      • Materials Testing
      • NDT
      • Simulation & Training
      • Software
      • Space
      • Structural Testing
      • Supplier News
    • T-Z
      • Technology
      • Telemetry & Communications
      • Weapons Testing
      • Wind Tunnels
  • Features
  • Magazines
    • March 2025
    • Dec 2024/Jan 2025
    • Showcase 2025
    • September 2024
    • June 2024
    • Archive Issues
    • Subscribe Free!
  • Opinion
  • Webinars
  • Events
    • All Events
    • Aerospace Test & Development Show
  • Podcasts
  • Videos
  • Suppliers
    • Supplier Spotlights
    • Press Releases
    • Technical Papers
  • Jobs
    • Browse Jobs
    • Post a Job – It’s FREE!
    • Manage Jobs (Employers)
LinkedIn YouTube X (Twitter)
LinkedIn YouTube X (Twitter)
Subscribe to magazine Subscribe to email newsletter Media Pack
Aerospace Testing InternationalAerospace Testing International
  • News
      • Acoustic & Vibration
      • Avionics
      • Data Acquisition
      • Defense
      • Drones & Air Taxis
      • Electric & Hybrid
      • EMC
      • Engine Testing
      • Environmental Testing
      • Fatigue Testing
      • Flight Testing
      • Helicopters & Rotorcraft
      • High Speed Imaging
      • Industry News
      • Materials Testing
      • NDT
      • Simulation & Training
      • Software
      • Space
      • Structural Testing
      • Supplier News
      • Technology
      • Telemetry & Communications
      • Weapons Testing
      • Wind Tunnels
  • Features
  • Magazines
    1. March 2025
    2. Dec 2024/Jan 2025
    3. Showcase 2025
    4. September 2024
    5. June 2024
    6. March 2024
    7. Archive Issues
    8. Subscribe Free!
    Featured
    19th March 2025

    In this issue: March 2025

    Online Magazines By Ben Sampson
    Recent

    In this issue: March 2025

    19th March 2025
    contents and front cover of magazine

    In this issue: December / January 2025

    19th December 2024
    Showcase 2025

    In this issue – Showcase 2025

    6th November 2024
  • Opinion
  • Webinars
  • Events
    • All Events
    • Aerospace Test & Development Show
  • Podcasts
  • Videos
  • Suppliers
    • Supplier Spotlights
    • Press Releases
    • Technical Papers
  • Jobs
    • Browse Jobs
    • Post a Job – It’s FREE!
    • Manage Jobs (Employers)
LinkedIn YouTube X (Twitter)
Aerospace Testing InternationalAerospace Testing International
Defense Environmental Testing

US Air Force landing gear test machine provides massive savings

Ben SampsonBy Ben Sampson14th May 20203 Mins Read
Share LinkedIn Twitter Facebook Email
Landing Gear Test Facility
Secretary of the US Air Force Barbara Barrett and Sami Labban at the Landing Gear Test Facility, Wright-Patterson Air Force Base, Ohio (U.S. Air Force photo by Ty Greenlees) (Image: US Air Force / Ty Greenlees)

Engineers from the US Air Force Test Center’s Landing Gear Test Facility at the Wright-Patterson Air Force Base, Ohio have developed a test that can identify, characterize and classify tire wear under realistic operational conditions, potentially saving thousands per tire over the life cycle.

The prediction of aircraft tire wear is a complex, time-intensive phenomenon, highly dependent on multiple variables. Historically, testers focused on the structural integrity of a tire prior to use. However the capability to quickly and accurately predict tire wear has remained a challenge across the logistics community.

Missionized Tire Wear Testing  uses specialized lasers and digital scanning technologies with a 168in internal drum dynamometer, a machine that operates at speeds up to 350mph and can provide variable levels of brake torque for aircraft tire wear testing. Replicated 3-D runway surfaces enable predictive tire wear data based on tests that use realistic ground conditions, therefore identifying potential issues and providing for design improvements early in the manufacturing process.

The internal drum dynamometer is a test machine developed and commissioned in 1998 for the purpose of aircraft tire wear testing. The 168i is shown here with a tire instrumented for predictive wear testing. (U.S. Air Force photo)

“This capability significantly reduces acquisition development timelines, life cycle costs and mishap risks prior to production and fielding,” said Gary Wollam, director, 704th Test Group’s Aerospace Survivability and Safety Office. “We’re combining digital modeling, testing and field data to effectively replicate runway surfaces and predict the behavior of a tire over time. This improves the safety of a tire and can identify issues prior to actual manufacturing and implementation on an aircraft.

“The ability to clone and replicate individual runway surfaces to examine tire interactions is key to this capability. We can examine take-off, taxi and landing conditions, with the data leading to the identification of better tire wear requirements for future tire specs.”

Wollam identified a number of recent successes leveraging the testing technology. The data from recent missionized wear tests improved tire life for one platform from approximately two to more than 24 landings per tire, with savings anticipated to exceed US$6 million per year.

As a key tool in the KC-135 Life Cycle Cost Program assessment, the technology simulated the impacts of three years of landings on a tire in less than six months. The data collected is predicted to result in nearly US$1.2 million in cost savings per one tire across the fleet over the next three years.

During a recent T-38 mishap investigation, the tool was used to assess cross-wind landing conditions. The testers were able to accurately replicate mishap conditions and results in a ground test environment. This resulted in new tactical guidance for landings that will be implemented into training simulators, thereby improving pilot safety.

“This next generation technology has helped us to fill test gaps, reduce flight test risks and reduce life cycle costs for the DoD fleet,” said Wollam. “This is just another one of our world-unique capabilities. As the premier Department of Defense landing gear ground test organization, we continue to innovate and push technology to ensure the safety and readiness of our warfighters.”

Share. Twitter LinkedIn Facebook Email
Previous ArticleM-345 jet trainer achieves certification
Next Article Gulfstream advances G700 biz jet flight test program
Ben Sampson

Ben has worked as a journalist and editor, covering technology, engineering and industry for the last 20 years. Initially writing about subjects from nuclear submarines to autonomous cars to future design and manufacturing technologies, he was editor of a leading UK-based engineering magazine before becoming editor of Aerospace Testing in 2017.

Related Posts

Defense

T-7A Red Hawk completes successful Escape System Sled Test

8th May 20252 Mins Read
Defense

US military flies Talon-A reusable hypersonic test vehicle

6th May 20253 Mins Read
Defense

Aurora SPRINT X-plane completes wind tunnel tests

1st May 20252 Mins Read
Latest Posts

Industry Adoption of 3D Optical Surface Gauges

21st May 2025

NDT: Robotics and software spur innovation

21st May 2025

Wisk and NASA to partner on US autonomous flight operations and standards

20th May 2025
Supplier Spotlights
Our Social Channels
  • Twitter
  • YouTube
  • LinkedIn
Getting in Touch
  • Subscribe To Magazine
  • Contact Us
  • Meet the Team
  • Media Pack
Related Topics
  • Aircraft Interiors
  • Business Jet Interiors
FREE WEEKLY NEWS EMAIL!

Get the 'best of the week' from this website direct to your inbox every Wednesday

© 2023 Mark Allen Group Ltd | All Rights Reserved
  • Cookie Policy
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.